github.com/RhysU/helm
A header-only PID controller.
helm.h File Reference

A header-only PID controller based largely on Chapter 10 of Astrom and Murray. More...

Data Structures

struct  helm_state
 Tuning parameters and internal state for an incremental PID controller. More...
 

Functions

static struct helm_statehelm_reset (struct helm_state *const h)
 Reset all tuning parameters, but not transient state. More...
 
static struct helm_statehelm_approach (struct helm_state *const h)
 Reset any transient state, but not tuning parameters. More...
 
static double helm_steady (struct helm_state *const h, const double dt, const double r, const double u, const double v, const double y)
 Find the control signal necessary to steady unsteady process y(t). More...
 

Detailed Description

A header-only PID controller based largely on Chapter 10 of Astrom and Murray.

This proportional-integral-derivative (PID) controller features

  • low pass filtering of the process derivative,
  • windup protection,
  • automatic reset on actuator saturation,
  • anti-kick on setpoint change using "derivative on measurement",
  • incremental output for bumpless manual-to-automatic transitions,
  • a unified controller gain parameter,
  • exposure of all independent physical time scales, and
  • the ability to accommodate varying sample rate.
helm.png
Block diagram for the controller

Let \(f\) be a first-order, low-pass filtered version of controlled process output \(y\) governed by

\begin{align} \frac{\mathrm{d}}{\mathrm{d}t} f &= \frac{y - f}{T_f} \end{align}

where \(T_f\) is a filter time scale. Then, in the time domain and expressed in positional form, the control signal \(v\) evolves according to

\begin{align} v(t) &= k_p \, e(t) + k_i \int_0^t e(t) \,\mathrm{d}t + k_t \int_0^t e_s(t) \,\mathrm{d}t - k_d \frac{\mathrm{d}}{\mathrm{d}t} f(t) \\ &= k_p \left[ e(t) + \frac{1}{T_i} \int_0^t e(t) \,\mathrm{d}t + \frac{1}{T_t} \int_0^t e_s(t) \,\mathrm{d}t - T_d \frac{\mathrm{d}}{\mathrm{d}t} f(t) \right] \\ &= k_p \left[ \left(r(t) - y(t)\right) + \frac{1}{T_i} \int_0^t \left(r(t) - y(t)\right) \,\mathrm{d}t + \frac{1}{T_t} \int_0^t \left(u(t) - v(t)\right) \,\mathrm{d}t + \frac{T_d}{T_f}\left(f(t) - y(t)\right) \right] \end{align}

where \(u\) is the actuator position and \(r\) is the desired reference or "setpoint" value. Constants \(T_i\), \(T_t\), and \(T_d\) are the integral, automatic reset, and derivative time scales while \(k_p\) specifies the unified gain. Differentiating one finds the "incremental" form written for continuous time,

\begin{align} \frac{\mathrm{d}}{\mathrm{d}t} v(t) &= k_p \left[ - \frac{\mathrm{d}}{\mathrm{d}t} y(t) + \frac{r(t) - y(t)}{T_i} + \frac{u(t) - v(t)}{T_t} + \frac{T_d}{T_f}\left( \frac{\mathrm{d}}{\mathrm{d}t} f(t) - \frac{\mathrm{d}}{\mathrm{d}t} y(t) \right) \right] . \end{align}

Here, to avoid controller kick on instantaneous reference value changes, we assume \(\frac{\mathrm{d}}{\mathrm{d}t} r(t) = 0\). This assumption is sometimes called "derivative on measurement" in reference to neglecting the non-measured portion of the error derivative \(\frac{\mathrm{d}}{\mathrm{d}t} e(t)\).

Obtaining a discrete time evoluation equation is straightforward. Multiply the above continuous result by the time differential, substitute first order backward differences, and incorporate the low-pass filter in a consistent fashion. One then finds the following:

\begin{align} {\mathrm{d}t}_i &= t_i - t_{i-1} \end{align}

\begin{align} f(t_i) &= \frac{ {\mathrm{d}t}_i\,y(t_i) + T_f\,f(t_{i-1}) } { T_f + {\mathrm{d}t}_i } = \alpha y(t_i) + (1 - \alpha) f_{i-1} \quad\text{with } \alpha=\frac{{\mathrm{d}t}_i}{T_f + {\mathrm{d}t}_i} \end{align}

\begin{align} {\mathrm{d}f}_i &= f(t_i) - f(t_{i-1}) = \alpha\left( y(t_i) - f(t_{i-1}) \right) \end{align}

\begin{align} {\mathrm{d}y}_i &= y(t_i) - y(t_{i-1}) \end{align}

\begin{align} {\mathrm{d}v}_i &= k_p \left[ {\mathrm{d}t}_i \left( \frac{r(t_i) - y(t_i)}{T_i} + \frac{u(t_i) - v(t_i)}{T_t} \right) + \frac{T_d}{T_f}\left( {\mathrm{d}f}_i - {\mathrm{d}y}_i \right) - {\mathrm{d}y}_i \right] \end{align}

where notice \(f(t)\) is nothing but an exponential weighted moving average of \(y(t)\) that permits varying the sampling rate. An implementation needs only to track two pieces of state, namely \(f(t_{i-1})\) and \(y(t_{i-1})\), across time steps.

Sample written with nomenclature from helm_state and helm_steady():

struct helm_state h;
// Set PID parameters from commonly given \c kp, \c ki, \c kt, and \c kd
h.kp = kp;
h.Td = kd / h.kp;
h.Tf = h.Td / 10; // Astrom and Murray p.308 suggests 2--20
h.Ti = h.kp / ki;
h.Tt = h.kp / kt;
// Enable automatic control and evolve
for (int i = 0; i < N; ++i) {
y = process(dt, u);
v += helm_steady(&h, dt, r, u, v, y);
u = actuate(dt, v);
}
// Disable controller and evolve
for (int i = 0; i < N; ++i) { // E
y = process(dt, u);
u = actuate(dt, v);
}
// Re-enable automatic control and evolve
for (int i = 0; i < N; ++i) {
y = process(dt, u);
v += helm_steady(&h, dt, r, u, v, y);
u = actuate(dt, v);
}

Data Structure Documentation

struct helm_state

Tuning parameters and internal state for an incremental PID controller.

Gain kp has units of \(u_0 / y_0\) where \(u_0\) and \(y_0\) are the natural actuator and process observable signals, respectively. Parameter Tt has units of time multiplied by \(u_0 / y_0\). Parameters Td, Tf, and Ti possess units of time. Time units are fixed by the scaling provided in the dt argument to helm_steady().

Data Fields
double kp Proportional gain modifying P, I, and D terms.
double Td Time scale governing derivative action.

Set to zero to disable derivative control.

double Tf Time scale filtering process observable for D.

Set to infinity to disable observable filtering.

double Ti Time scale governing integral action.

Set to infinity to disable integral control.

double Tt Time scale governing automatic reset.

Set to infinity to disable automatic reset.

double y Internal tracking of the process observable.
double f Internal tracking the filtered process.

Function Documentation

static struct helm_state* helm_reset ( struct helm_state *const  h)
static

Reset all tuning parameters, but not transient state.

Resets gain to one and disables filtering, integral action, and derivative action. Enable those terms by setting their associated time scales.

Parameters
[in,out]hHouses tuning parameters to be reset.
Returns
Argument h to permit call chaining.
202 {
203  h->kp = 1; // Unit gain
204  h->Td = 0; // No derivative action
205  h->Tf = INFINITY; // No filtering
206  h->Ti = INFINITY; // No integral action
207  h->Tt = INFINITY; // No automatic reset
208  return h;
209 }
static struct helm_state* helm_approach ( struct helm_state *const  h)
static

Reset any transient state, but not tuning parameters.

Necessary to achieve bumpless manual-to-automatic transitions before calling to helm_steady() after a period of manual control, including before the first call to helm_steady().

Parameters
[in,out]hHouses transient state to be reset.
Returns
Argument h to permit call chaining.
224 {
225  assert(h->Td >= 0);
226  assert(h->Tf > 0);
227  assert(h->Ti > 0);
228  assert(h->Tt > 0);
229  h->f = NAN;
230  return h;
231 }
static double helm_steady ( struct helm_state *const  h,
const double  dt,
const double  r,
const double  u,
const double  v,
const double  y 
)
inlinestatic

Find the control signal necessary to steady unsteady process y(t).

Parameters
[in,out]hTuning parameters and state maintained across invocations.
[in]dtTime since last samples collected.
[in]rReference value, often called the "setpoint".
[in]uActuator signal currently observed.
[in]vActuator signal currently requested.
[in]yObserved process output to drive to r.
Returns
Incremental suggested change to control signal v.
See Also
Overview of helm.h for the discrete evolution equations.
254 {
255  double dv = 0;
256 
257  if (!isnan(y)) { // Avoid driving blind
258 
259  if (isnan(h->f)) { // Avoid startup kick
260  h->y = y;
261  h->f = y;
262  }
263 
264  double a, df, dy;
265  a = dt / (h->Tf + dt); // Convex combination parameter alpha
266  df = a*(y - h->f); // Filtered difference for y
267  dy = y - h->y ; // Backward difference for y
268  dv += (r - y) / h->Ti; // Action from integral control
269  dv += (u - v) / h->Tt; // Action from automatic reset
270  dv *= dt; // Scale integral actions by time step
271  dv += (h->Td / h->Tf)*(df - dy); // Action from derivative control
272  dv += /*dr=0*/ - dy; // Action from proporational control
273  dv *= h->kp; // Scale by unified gain parameter
274 
275  h->y = y; // Update observable for next call
276  h->f += df; // Update filter for next call
277  }
278 
279  return dv;
280 }